Green Infrastructure
New York City

Mary Nunn, RLA, LEED Green Associate
Green Infrastructure Unit
New York City Department of Parks & Recreation
Table of Contents

Green Infrastructure in NYC
• Citywide Systems
• NYC DEP’s GI Plan
• Agency Roles

Approach
• Site Selection
• Community Outreach

Design & Engineering
• ROWB Requirements
• ROWB Components
• ROWB Design
• SGS Design
• Lessons Learned

Performance
• Monitoring Equipment
• Research Data

Future of Green Infrastructure
• What’s Next
Green Infrastructure in NYC
NYC Land Area
72% impervious
25% ROW
14% parkland
Wastewater Drainage & Collection

DEP City Operated Facilities
- 14 treatment plants
- 4 CSO retention facilities
- 96 pumping stations
- 426 combined sewer outfalls

Treat 1.3 billion gallons of dry weather flow per day
Sewer System

Combined Sewers (49% of the city)

- 7,400 miles of sewers
- 3,337 miles of combined
- 2,271 miles of sanitary
- 1,801 miles of storm
- 400 acres of Bluebelts (draining 14,500 acres)
What is a Combined Sewer Overflow?
A City-Wide Plan
DEP GI Plan

Objectives

• Build cost-effective grey infrastructure

• Optimize the existing wastewater system

• Control runoff from 10% of impervious surfaces through green infrastructure

• Institutionalize adaptive management, model impacts, measure CSO's, and monitor water quality

• Engage and enlist stakeholders
Budget

Distribution

- $1.5 billion public investment for GI
- $.9 billion private investment for GI
- $2.9 billion cost-effective grey investments

$187 million in capital funds for Green Infrastructure work for the next four years
Primary Agency Roles

New York City Department of Environmental Protection:
- funding source
- overall program management
- specification & detail development
- site selection

New York City Department of Parks & Recreation:
- maintenance
- site design & construction
- property Owners
- specification & detail development
- site selection

New York City Department of Transportation:
- property owners
- site selection

New York City Department of Design & Construction:
- site design & construction
Approach
Bronx River Sewershed
Site Selection

Hydraulic Analysis

- Mapping of TDA’s (Tributary Drainage Area)
- Analysis of TDA square footage
Site Selection

Field Analysis

• Walkthrough selection conducted with NYC DPR, DEP, & DOT
Site Selection

Geotechnical Analysis

• Boring to 15’ depth
• Permeability test at 5’ & 10’
• Survey of site location and context
Community Outreach

Green Infrastructure Stakeholders
• Neighborhood Outreach: citywide public meetings & listserve
• Steering Committee: GI implementation focus related to green job creation, technical advice & research, education & engagement

Construction Notification
• Postcard sent to over 25,000 addresses in project vicinity
• Presentations to community boards, elected officials, and local community groups
Community Outreach

Education and Engagement

- BioswaleCare stewardship initiative with MillionTreesNYC
- BioswaleCare workshops in priority sewersheds
- Online Resources
Design & Engineering
ROWB Requirements

Major Siting Considerations
- Must maintain 8’ Clear Path
- Provide clear access to major building entrances
- Follow standard DOT siting requirements for distances between street furnishings
- Must be located upstream from a DEP catch basin and at least 35’ from an intersection
ROWB Components

Typical NYC Tree Pit

Typical NYC ROWB
ROWB Components

- Tree
- Tree Guard
- Curb Outlet w/ Concrete Apron
- Plants and Shrubs
- Stone Buffer
- Curb Inlet w/ Concrete Apron
ROWB Components

Engineered Soil 2’-3’ Depth
(70-85% Sand, Max 30% Fines)
ROWB Components

Standard Sizes
- Length: 20’, 15’, or 10’
- Width: 5’
CITY OF NEW YORK
DEPARTMENT OF ENVIRONMENTAL PROTECTION
OFFICE OF GREEN INFRASTRUCTURE
STANDARD FOR 20'x5' R.O.W. BIOSWALE TYPE 1
- NO CONNECTION TO SEWERS

PLAN
(IN CROSS-SECTION)

SECTION A-A
AT ROADWAY OUTLET

SECTION B-B
AT INFILLMENT OUTLET

SECTION C-C
AT INFILLMENT OUTLET

ASSISTANT COMMISSIONER, OFFICE OF GREEN INFRASTRUCTURE
DEPARTMENT OF ENVIRONMENTAL PROTECTION

7/25/2012
ROWB Design

Planting Schematics

- Residential Schemes (2)
- Urban Schemes (3)
- Especially Wet
- Especially “Dry”
- Especially Shady
- No Grass Scheme

RESIDENTIAL SCHEME 2 - SITES IN RESIDENTIAL NEIGHBORHOODS AND LOW VOLUME CIRCULATION AREAS
Greenstreet

Total Existing Greenstreet Sites

- Queens: 855
- Bronx: 461
- Manhattan: 381
- Brooklyn: 514
- Staten Island: 325

Citywide: 2,536
Greenstreet Design Evolution
Seagirt Boulevard between Beach 19th and Beach 20th Street

Jamaica Bay Watershed

Photographed Summer 2010 / Design improves pedestrian flow and creates an amenity for the neighboring homeowners and hospital.
Westbourne Ave. & Bay 25th St.
Jamaica Bay Watershed

Photographed Fall 2011 / Site captures stormwater during a post-construction hydraulic evaluation and provides an educational tool for the neighboring public school.
Francis Lewis Blvd. between 217th St. & 220th Ave.
Thurston Basin Watershed

Photographed Fall 2012 / Design eliminated hazardous ponding conditions, simultaneously creating a space with year-round interest.
Stormwater Greenstreet | Before
Stormwater Greenstreet | 1 month post-installation
Stormwater Greenstreet | 1 year post-installation
Stormwater Greenstreet | Construction

Examining Subsurface Infiltration Rates
Francis Lewis Blvd & 220th Street, Queens

Setting Formwork for Concrete Check Dams
Targee Avenue & Van Duzer Street, Staten Island

Installing Research & Monitoring Equipment
Colfax Street, Murdock Avenue & 221st Street, Queens

Installing Geotextile & Piping
Victory Boulevard & St. Pauls Avenue, Staten Island

Installing Plant Material
Camp Road & Fernside Place, Queens

Testing Post Construction Hydraulic Evaluation
Westbourne Avenue & Bay 25th Street, Queens
Lessons Learned

Challenges
Lessons Learned

Coordination
Lessons Learned

Improvements
Performance
Monitoring Equipment

Inlet Flume
- Monitors flow rates of stormwater runoff
- Nashville Boulevard and 116th Avenue, Queens

Climate Station
- Measures precipitation, wind speed and direction, solar radiation, and relative humidity
- Nashville Boulevard and 116th Avenue, Queens

Monitoring Well
- Quantifies fluctuations in the water table
- Nashville Boulevard and 116th Avenue, Queens

Weighing Lysimeter
- Measures evapotranspiration and soil moisture
- Colfax Street and Murdock Avenue, Queens

Water Quality Samplers
- Determines pollutant removal efficiency
- Colfax Street and Murdock Avenue, Queens

Shallow Well
- Measures ponding depth in planting bed
- Colfax Street and Murdock Avenue, Queens
Nashville Boulevard between 116th Avenue and 209th Street
Thurston Basin Watershed

Photographed Fall 2012 / Design is composed of a robust selection of native plants and a variety of monitoring equipment.
Monitoring Equipment

SECTION C-C' 1/2" = 1'
NASHVILLE AND 116TH

SECTION H-H' 1/2" = 1'
NASHVILLE AND 116TH
Monitoring Equipment

SECTION C-C' 1/2" = 1'
NASHVILLE AND 116TH

SECTION H-H' 1/2" = 1'
NASHVILLE AND 116TH
Monitoring Equipment

SECTION C-C'
NASHVILLE AND 116TH

SECTION H-H' 1/2" = 1'
NASHVILLE AND 116TH
Monitoring Equipment
Hurricane Irene & Superstorm Sandy

Irene:
The total volume of precipitation falling on Nashville was 6.4” of rain, totaling 5,382 gallons over an area of 1,560 square feet. A total of 2,166 gallons of water entered through the curb cut.

Sandy:
The total volume of precipitation falling on Nashville was 1.3” of rain, totaling 1,083 gallons over an area of 1,560 square feet. A total of 38,806 gallons of water entered through the curb cut. Inflow from the street was thus approximately 31 times as much as direct precipitation on the site.
Hurricane Irene & Superstorm Sandy

Irene:

Ponding occurred throughout much of the event, though overflow only occurred twice for a duration of 20 minutes total and estimated to total 1,570 gallons. The retention rate of runoff was 79.3% throughout the storm event.

Sandy:

Ponding was minimal throughout the storm, only reaching 5mm above the surface, and there was no overflow. Thus, 100% of the runoff was managed.
Hurricane Irene & Superstorm Sandy

Though large quantities of precipitation and runoff were infiltrated at Nashville, neither storm appears to have resulted in more than a 20 cm temporary increase in the water table elevation. The soils were wetter during Irene than during Sandy, but in both cases returned to near their pre-storm values within about 24 hours of the most intense precipitation.
Overall Performance

- Inflow from the street was approximately 31x direct precipitation on the site.
- Approximately 40,000 gallons of water deposited by Sandy either infiltrated or evaporated.
- On an annual basis, modeling of the site’s performance suggests 74% - 86% retention of all stormwater presented to it. This percentage is dependent upon annual precipitation amounts.
Future of Green Infrastructure
Hurricane Sandy
Storm Surge Inundation

Water depth
- High: 14 feet
- Low: 2 feet
- NYC Parks

Indundation data provided by FEMA
Prepared by Forestry, Horticulture & Natural Resources
Updated FEMA Advisory Zones

- Zone A - 1% Annual Coastal Flood Chance
- Zone V - Subject to high velocity wave action

FEMA Advisory Base Flood Elevation Maps were released on February 24th, 2013.

City of New York - Parks & Recreation
Michael R. Bloomberg, Mayor
Serena R. Webb, Commissioner
Forestry, Agriculture & Natural Reuse

NYC Parks
Updated FEMA Advisory Zones

- Zone A - 1% Annual Coastal Flood Chance
- Zone V - Subject to high velocity wave action
- Park Properties

FEMA Advisory Base Flood Elevation Maps were released on February 24th, 2013.
Updated FEMA Advisory Zones

FEMA Advisory Base Flood Elevation Maps were released on February 24th, 2013.
Thank You

Mary Nunn, RLA, LEED Green Associate
Mary.Nunn@parks.nyc.gov

LINKS:
DEP GI Plan

GI Standard Details

NYC DPR Green Infrastructure
http://www.nycgovparks.org/greening/green-infrastructure